音の仮想空間
橋本周司
早稲田大学

館
橋本周司先生のご紹介したいと思います。橋本周司先生は有名な方でございますが、私のために紹介いたしますと、1948年にお生まれになりまして、早稲田大学理工学部の応用物理学科を卒業されて、その後東邦大の理学部の講師、その後早稲田大学に戻られてまして、現在早稲田大学応用物理学科の教授をなさっております。音楽というものの情報処理と言うことで非常に精力的に研究されておりますし、感情情報処理のようなこともなさっております。また、動画像処理とかロボット工学、複雑系の研究を行ったことも従事されているわけであります。二足歩行ロボットのヒューマノイドの研究会というのもがありまして、橋本周司先生がそれを主宰されているということが伺っております。本日はその中でも特に音のVRのお話しをお願いしております。音はVRのなかでも重要な要素でありまして、音のない世界というのは非常に味気なない世界でもあるわけです。そういう音があってその中の世界がはじめて広がってくると言うことでございまして、音のバーチャルリアリティに関する研究をピレオ等を交えながらご紹介頂くと言うことでございます。
では、橋本周司先生よろしくお願いいたします。

橋本
どうもありがとうございます。
早稲田大学の橋本です。

今ご紹介頂きましたが音のバーチャルリアリティといいますと、少し広すぎて話が難しくなりますので、今日は音楽の仮想空間と言うことで、音というわゆる自然の音をふくんだ話ではなくて、音楽にかなり限定した話をさせて頂きたくと思っております。

音楽の仮想空間について一時間ですので、約20分かあるいは25分くらいは音楽関係の研究と申しますか、楽しみでやるの多いですけど、そいうことをやりながら考えたことから、やってきた内容を少しお話しさせて、あと、30分くらいピレオを作ってきましたので、もうすっぱい話が済まるかなと思っていて、ピレオを見て頂くと思っております。

わたくしでも、音楽というものを始めたのはあとでピレオにも出てきますが、私の先任の大崎先生が早稲田大学ご在職中に行われたロボットのプロジェクトがきっかけです。そこで筑波万博にミュージシャンロボットというものを早稲田大学の5つか6つの研究室が共同で出展したわけです。

このロボットというのはキーボードを両手両足で弾むわけですけれども、私たちの研究室では楽器を認識する部分を担当したわけです。手のカメラを使ってロボットの目から入ってきた楽器を自動認識する。さらに、楽器をやっていったと言うよりは文字認識、パターン認識の問題を扱っていました。

いろんなハードウェアを作りまして、実際に実現しなきゃいけないと言うことで、A4版の楽譜１ページ読みとるのに約10秒くらい。実際にこれは演奏にそのまま使いますので、失敗した所をうまくごまかすような処理が必要です。そういうところに結構気を使ったと思います。手足の部分は機械工学科の加藤一郎先生の研究室で作られました。
こういうことやまってから、音楽というものに多少ずつ
入ってきまして、音楽の扱い情報処理についていっても
やってきたわけです。実際にやってみてみると、このようなシ
ステムがリアルティを持っているかどうかと言えばのはバー
チャルリアルティとちょっと違った意味で非常に重要に
なってくる。つまり、できあがったものを見てもらって、
例えば誰が何秒だから非常に技術的によくなったとか、
新しいアルゴリズムとなってしまい、という評価もあればす
が、結局は音楽システムというのは聞いて楽しくなくち
いける。あるいは、使って自分の出したい音を出せるか
どうか、というところが勝負となるわけです。そうします 
とあるシステムが音楽のためのシステムとしてリアルティ 
を持ちうるかというのだが非常に大きな問題とさせて
きます。そういう意味でパーキャナルリアルティを考えているリ
アリティの問題というのが、こういうシステムの中でクロ
ーズアップされます。

リアリティーという言葉をひいてみますと2種類ある。
一つはobjective realityもう一つはsubjective realityつまり主
観的リアリティと、客観的リアリティがあるといわくで
す。

<table>
<thead>
<tr>
<th>限额</th>
<th>チャネル</th>
<th>支配則</th>
<th>分野</th>
<th>仮りの尺度</th>
</tr>
</thead>
<tbody>
<tr>
<td>言語</td>
<td>光、音、力</td>
<td>物理法則</td>
<td>人工現象</td>
<td>言語的尺度</td>
</tr>
<tr>
<td>言語</td>
<td>形態、音楽</td>
<td>理論、文学</td>
<td>人工現象</td>
<td>言語的尺度</td>
</tr>
<tr>
<td>感性</td>
<td>音楽、音楽</td>
<td>美学、芸術</td>
<td>感情情報</td>
<td>感情的尺度</td>
</tr>
<tr>
<td>感性</td>
<td>音楽、音楽</td>
<td>美学、芸術</td>
<td>感情情報</td>
<td>感情的尺度</td>
</tr>
</tbody>
</table>

図1 リアリティの階層

では、音楽でのリアリティと、例えばパーキャナルリア 
テイティでのシステムのリアリティはどう違うのか、と考
えてきたわけです。

いわゆるパーキャナルリアルティ、実際にもっと深いも
のがあると思うのですが、例えば物理空間の仮想的な実
現を考える。そうすると、基本的な技術としては実時間
の環境のシミュレーションであるとか、あるいはその環境
に対して物理的な仮想のインタフェース、ということで、
自然法則や生理法則に矛盾しないように作らなくては
いけない、ということが中心課題になると思うのです。

つまり、これは自然の環境の中での人間と環境の問題。 
それに対して音楽は少し様相が変わってきます。どちらか 
というと、もちろん自然のパーキャナルリアルティも事実 
なんですが、芸術的な空間とのインタラクションの問題が大 
切です。あるシステムがリアルティがあるというのは、例 
えば楽器として思い通りに音が出るか。つまり、道具と操 
作の関係が非常にうまく行っているか。ということとか、
あるいはそれが創作活動にとって意味があるかどうか、あ 
らいいは鑑賞の立場から見てそれが鑑賞に堪えうる音を出 
すかどうか、というようなところで、音楽というものに規 
定されたリアリティというものがあります。

音のパーキャナルリアルティといいますとそれ以外に物理 
的なリアリティがあります。たとえば、こういう風なた 
どの音を出したときその反響がどういう風に響ってくる 
か。これは、いわゆる物理法則に従ってシミュレーション 
を行なべきリアルティです。

それ以外に、例えばある和音をひいたときに、その和音 
が目標のある音階関係を持って出るかどうかというよう 
なことに関しては、それは自然法則の問題ではなくて、ど 
ちらかというと、音楽における約束事に反していないかど 
うか、ということです。

もちろんその約束事というのは長い間、例えば西洋音 
楽ですねというような音階理論があったというものが作ら 
れてきたわけですが、もともと感性に対して矛盾しないで響 
かというようなことで、自然の中での人間のリアルティと 
はちょっと違う。ある意味で、約束事の中、ソサエティー 
の中でのリアルティの問題があると、そのようなことを考 
えているわけです。

そういうことを整理してみますと、これはかり勝に手
分類しているのですが、情報処理の階層を3段階に分け
て考えることがあります。

1つは表の一番上ですが、波形の上の情報処理。こ 
れは、光だとか、音だとか、力をどうやってコントロール 
するか、あるいは処理して行くかという問題です。この世 
界がいわゆる狭い意味でのパーキャナルリアルティの基盤 
技術になります。そこでは支配則は物理法則です。つまり、 
物事が自然科学的に説明できなくてはいけない。因果律 
に矛盾がないということですが、システムのアウトプットとユ 
ーザとの関係に成り立っているかどうか。というところが 
リアリティをチェックする項目の1つつになります。

その次は、意味のレベルというふたつに書きました。い 
わゆる人工知能で知識処理を行なっているレベルのリアリ 
ティ。これは、生の物理的な光や音ではなくて、どちらか 
というとシンボル、言語とか図形、あるいは数式を扱う、そ 
こでの情報処理の問題です。そこでは物理法則というよ 
りは、どちらかというと、論理とか、あるいはは文法が支配 
則となっている。それに対して矛盾しないということが、 
システムがリアルティを持っているということになるであ 
ろうかと考えられます。つまり、ここでは証明できる、論 
理的に矛盾していないかということが問題になっています。 

4
先ほどの主観的、客観的、でいうと、いままでのところは、客観的リアリティです。主観的リアリティというの
が数年前からいろいろなところで行われている感性という
レベルでの情報処理です。ここでは、光や音でなく、あ
るいは、音楽や絵画でなく、もう少し複雑にそれらが
オーガナイズされた音楽とか絵画、あるいは音楽とか音楽
というものが情報伝えるチャネルでリアリティという
ことが考えられます。そこでは支配則はあまりはっきりし
ない。これがはっきりすれば非常にいいのですが、支配則
が主観であるとか、あるいは、ユーモあるいはそれを作っ
たソフトウェアの作者、音楽家としてと、作曲者と演奏
家と聴衆の共有、ある種の共感をもっているかどうかとい
ことで、説明、説明を来たしましたが、ここでは、共鳴と書い
たのですが、どちらかというと魚類的にに魚類であるとい
うこと、つまり音楽を作ったときにそれが受け入れられる
かどうか、納得できるか、というところがリアリティの尺
度となってくるだろうと思います。

私どもが考えているのが、音楽の仮想空間を作るという
ことですが、この仮想空間というのは、今いった意味
で感性レベルでリアリティを持った空間を作っていこうと
いうことです。さらに、物理的な意味でのリアリティが付
随していないわけではないが、私たちの所では、一応それは
置いておいて、音楽としてリアリティを持ったシステムを
何とか作れないかと考えているわけです。

例えば、自由に操る楽器、つまり、自分の動作が音
になっている。その音がある意味で音楽としての文法にか
なっている。自分のいいたいがそれに表せていないかど
うか。あるいは、仮想のオーケストラが自分を操揮を振
ったときに、演奏をやってくれる演奏家がそろえてくれ
るような、そういうものは作れないか。もちろん目の
前にそういう人がいて、アイソがかそこなうという
ことができるならば、それにたいしです。ここでは、音との
関係、動作と音だけの関係をもってこういうものを作
いていかな、あるいは、おぼえの作曲家みたいなものが作
れないかということです。例えばあとでビデオでお見せし
ますが、画像を入れて、それを作曲システムにつないて動
画像から音楽を生成するようなことをやっているの
ですが、そういうところで出てきた音楽が与えられた画像
とかあるいは場に対してリアリティを持つようにした。な
難しいので、実用に耐えうるようなものを作るのは大変な
んですが。

そうしますとこのシステムの入力というのは、ほとんど
が人間の動作と音響になります。でいてている音響と
いうのは私ども人間の声というものを中心に考えており
ます。実際に世の中にあるシステムとしては、楽器の生
の音を入力として動かような音楽システムというものが
あります。つまり、音響処理と人間のジェスチャーとか交
言がシステムへの入力をなる。つまり、環境への入力とな
るわけですね。その入力に対してもの物理法則に従うよ
うなところも大切なんですが、さらに重要なのが、音楽的
な法則に従っていることでは、音楽的な知性を持って応答
してくれる空間を作ることです。

つまり、与えた動作がある音楽的意味があるのであれ
ば、それをしっかり理解したアウトプットが出て欲しい。
出力は出力ですから、第一に音響。実際にはその音響は
どういった空間で発生されているかということも重
要ですから、空間の物理的なシミュレーションも大事なん
ですが、そこまで至っておりません。出力はほとんどの
場合、現在扱いやすいのでMIDIのサウンドジェネレータ
を使います。実際にはこれも不十分なことも合わっている
のですけれども、扱いやすいということで、そういう既製
のシンセサイザーを使っております。

例えば、そういうシステムの例をお見せしますと、私ど
もの仕事ではないのですか、カナダのトロントのピッセン
ートが作ったマンドロというシステムがあります。バーチャル
リアリティでもこういうテクニックは使われておりますけ
ど、映像をカメラでとって、それとCG映像を合成して、
画面の中の仮想の画像にふれて、例えば鈴に触れると鈴
の音がする。弦に触れると弦の音がする。というシステムな
んです。こういうシステムが91年という前に作ら
れていて、数年前からいろんなところでデモストレショ
ンをやっていました。

これはつまり、この空間の中で人が動き回ると、その空
間には座標があって、この座標のどこに手があるか、どこ
に足が触れたかということでシンセサイザーを駆動するシ
ステムなのですから。ですから、この中を動き回るいろんな
音がしてくる。ただこれは、特に音楽的知識が基礎的に
てでも気の利いた音を生成しようというものではなく、
すべての中で動かす人の感性でできている、というもので
す。余談になりますけどアリカでは自分のサイエンティ
ストでコンベンダーであるという人によく見かまして、
それぞれと話してみると、深さは違うんですけどにかく
両方やるという人がいるんですね。この人もそういう意味で
はシステム作りと音作りを両方やるというわけです。

音響を使った人間のコミュニケーションというものを考
えてみますと、まずコミュニケーションする主体の人間の
知性みたいなものがある。あたかも、感情がある。それが
発信するときには筋肉系を使って意図がコード化されて音
日本バーチャリティ学会誌第2巻第1号 1997年6月
特別講演

感性情報 音楽

図2 音響によるコミュニケーション

特に我々が注目しているのは、この筋肉系を使って発信するということです。つまり、何らかの筋肉の動きがあると、そして音響が発するというときで、そのシステムをいわゆる我々が今まで持っていたもの、あるいは生まれたままのもの（プレーオン）として考えて行きたい。
その道具が気軽に使われるという意味では、音楽的な知性を持っている、受け取って音を出すで、出したい音を音楽的な意味で適度な音が出ているというようなシステムを作りたいくだろ覚えです。

簡単にいえば楽器というの人は人間の動作を音に変換する変換器であるというわけです。この楽器をもう少しフレキシブルな、つまり、いくつかの音楽の音系以上のものに作って行きたいというのが一つの方向です。

従来の楽器というのはどうかというと楽器自体の物理的な構造によって決まっているというわけ。このところを計算機が入りますと、動作に音の関係を自由に設定できますから、その設定した自由さの中に、ある音楽的な知性が入らないか、感性的なルールがないかということを考えているわけです。

あるとビデオで見て頂きながら説明いたしますが、大きく分けて2つのシステムがあります。一つはジェスチャーを用いて音楽を制御しようというシステムです。これは人間の動作から音響を生成するもので、なるべく簡単な装

置で誰でも使えるようなものを作りたいというのが一つの目的でです。また、ジェスチャーと音響との関係では、ある程度納得いくようなものを作たい。ただ、この納得というのが難しい、音楽のことをよく知らない人にとっての納得と、よく悩む人の納得は違う違うかもしれない。できれば使う人の性質に応じてチューニングできるようにしたいというのが我々の目的です。

それから、もう一つは、いわゆる音楽ではなくて、音響を生成する道具としてのシステムです。つまり、メロディーとかハモニオンとかである前から楽器ではない音を出したという要求があるわけ、これは少しレベルの違う動作から音響を得る変換になります。いずれにしろこのようなシステムは、実時間で動作しないと意味がない、というわけで、非常に重たいシステムになってしまうと、とても使えないということになります。

私どもが最近やっているのは、データグローブを使って動き、特にポジションセンサで手の位置、指の形を計算機に入力し、加速度センサを使って、加速度を直接計算機に入力するということを考えています。簡単いうちとデータグローブの方はどちらかというとポリュニックな入力とか言語的な入力、ある約束に従っているような入力をするのに通っています。それに対して加速度センサというのは力をそのまま入力できますから、音色とか感情を入力するのに適しています。つまり、我々の感情的な動きというのは筋肉による力に直接現れるから、それを何か音に変換したいということです、その両方を使ってみようと思っていられるです。

このようなシステムに加えて現在やっておりますのは、特に音を入力を使うということで、従来は画像処理の方が得意だったのですが、現在は音響の処理もやり始めているのです。例えば非常にポーシングな問題としては2つの音が重なって聞きこえるときに、モノラルのマイクで出た音を分けて聴こえるようにしたいという問題。これはまさに音響処理の問題なので、これは、ブラインドデコンポジションという要素に分解問題ですね。ステレオならある程度できるのですが、モノラルでもできるということを確かめたいわけです。

例えば、トランペットとクラリネットのスペクトラムですが、両方重なって入っている。条件はほとんどないのですかが、2つの音を扱うことができるでデコンポジションしますと下のような結果もあるスペクトラムが分離される。ピッチが違うと分離しやすいのですで、同じでも分離できるということを確かめたわけです。
図3 同一音域の分離（ホルンとヴァイオリン）
a) は混合音、c) d) は分離音。
e), f) は原音のスペクトル

あるいは、人間の歌声にそのまま伴奏をつける一種のカラオケシステムなので、カラオケがハイテクリアリティシステムと違うところは、音の分割が伴奏にあわせて歌って行かなくてもいいのに対して、伴奏システムは歌う人にあわせて伴奏して行かなくてはいけないという点です。そのために我々は音声の処理をしています。歌っている音の音色をリアルタイムで処理するということと、歌っている歌詞をリアルタイムで認識しようということを試みしていて、それにより音のどの部分を歌っているかということをある程度音楽に歌っても追従できるようなシステムを作っているところです。

そのことによりますと、アダプティブなカラオケシステムというのはゼロが自由にできるという必要もありますし、ある人の音域が非常に狭いときに2オクターブ、3オクターブに音域を広げてあげたいという問題もあります。そういう問題に1つ1つ答えられるような処理技術というのは現在やっているところです。

また、音のデータベースのシステムとBGMを自動生成するシステムを作っていますのでご覧頂きたく思います。

図4 ミュージシャンロボットWABOT-2

（WABOTビジオ）

これは、我々が音楽に関わったミュージシャンロボットの研究です。筑波万博でE館と浦和れたのですが、この場合はロボットにオーケストラがおわっています。

このシステムでは楽譜を読みとって演奏を行い、また人間の歌を聴きながら演奏とあっていかということを確認しています。

図5 指揮システム

（指揮システムビジオ）

これは、そのあとにやったシステムで、コンピュータで指揮をするシステムです。指揮棒の位置はテレビカメラで撮って画像処理しています。

指揮というのは、万国共通で、指揮者の個性はありましたが、基本的には同じです。

（指揮システム演奏ビジオ）

この指揮をしているのもピアノを弾いているのも、うち
の研究室の元の学生です。２人とも自分たちで演奏会を開けるぐらい音楽には詳しいのですけれども、このシステムでいいたいのは指揮者とコンポーザーがコントロールする、左 手で細かくニュアンスをコントロールする。それが、人間 に対する指示と同じですので、システムと人間が同じ指揮 者のもとで協奏曲を演奏することもできるということで す。

昔ヨーロッパにあり、今でもあるのはもちろんですねが、 ミュージック・マイナス・ワンというオーケストラの部分 だけ入ったコネクテクトのツープル・カラレコードがありま した。それはオーケストラ部分のテンポが決まっていて、弾 く人はそれにあわせて演奏しなくてはいけなかったのです が、この場合には指揮者がもう一人いればその人が自由 に演奏をアレンジできるということになります。

（ダンス認識システムピアノ）

同じシステムをシルクハットの動きを上げて、フ ロアパターンからダンスの種類を認識して適切なBGMを生 成しようというシステムです。ただし、これはダンスの種 類が少ないのでは比較的簡単になっています。

（指揮にあわせて歌を出すシステム）

これは同じ指揮システムで人間の歌声をコントロール するシステムです。テンポを早くすると普通ピッチがあが ってしまうのですのが、これはピッチを変えずにテンポをコ ントロールしうるシステムです。ここでは、画像も ペートーンで美しい表情で独唱されています。要するに 画像さえ変えればネコでも歌うということになります。

ういう弾き方のパターンを指の形でもって認識しようとする ものです。また、いろいろな楽器の音色をださせることも できます。そのとき音楽のピッチをどうやって決めている かというと、マイクから取ったハミングの音の高さで 楽器のピッチを変えます。ですから、その人が歌えば好き な楽器の音になって出てくるというシステムです。音痴に 歌えば音痴に出てきてしまうのですのが、楽器を弾けなくて も弾いた気になるシステムです。

ハミングではなくて実際に入る楽曲データから再 生して、弾きながら楽器のアレンジをすることもできます。 パート譜を使うとパートごとに任意の楽器で演奏すること が可能です。さらに、それに方向指示を与えると、３次 元のどの位置にも対応できるというシステムになります。
図9 加速度センサによる動作の可聴化

（仮想楽器ビデオ）
これは同じシステムをプロが使ったものです。
さらに、ポジションの指定をして好きな場所から好きな楽器の音が聞こえるというシステムも作りました。
次に、より直接的に音を作りたいということでジェスチャーと音の生成をニューラルで結びつけたシステムがこれです。

（指揮システム）
これは画像処理ではなくて加速度センサで指揮をするシステムです。非常に簡単なものとなっております。これには、振るのを途中でやめても演奏が続けるし、後から入って行くとまだ同期してくれるという工夫がしてあります。
これは同じ道具立てで音源のパラメータを送ってトリガを直接結びつけるということと動作のトラジェクトリを可聴化してそれを音の波形にして出すということをやっております。

（NHKためしてガッテンビデオ）
今のシステムみたいに非常に簡単に使えるようになると進みかたもいろいろ出てまいります。

図10 人工声帯システム

（人工声带ビデオ）
次は、音源の問題で人工声帯を使って電子音でなくて物理的な振動で音を出せないかということを考えております。簡単にいえば声を出す機械を作る実験をやっているわけであります。
はじめは音程のコントロールだけでも大変で、それを空気流量と人工声帯の張力で調節してハミングで歌を歌うということをやっております。

図11 BGMの自动生成

（自動BGM作曲システム）
これは、バックグラウンドミュージックを生成するシステムです。リアルタイムで画像特徴と作曲のパラメータを結びつけてシーンチェンジのたびにBGMを変えます。つまりBGMを自動作曲するシステムとなっております。
このシステムはユーザが自分の好みを入れられるようになっております。作曲した結果出てくる音が気に入ったならばyesといいうなれば入らぬnoということにより、自分でチューニングするようなことができます。

図12 音による音の検索
（上：検索キー、下：検索結果のスペクトログラム）

（音色検索システム）
これは、音を検索するのに音を使って例えばキーワ
という音をデータベースから探すシステムです。提示するときはステレオで定位を変えながらいくつかの音を提示しているので、音に入った音の方向を指せばそれをもとに次の検索ができます。

これも検索をすすめて行くうちにその人が何に注目して検索しているのかということを見つけだそうとしています。

画像データベースを画像を使って検索しようとするシステムがありますが、これはその音版といえます。

図13 アダプティブカラオケシステム
（カラオケ伴奏システム）

これは、音声認識とピッチの認識を同時にやる最新のシステムです。スペシャルドウェアは何もないマッキントッシュにマイクをついているだけのシステムで実現しています。実時間の音声認識は難しいので実際にやっているのは、母音です。それら音のデータと照合しています。それと音程をテンポ抽出のキーとしているのです。

この次に出てくるのが、音楽を自動的に修正しようとという機械にとっては大変ありがたいシステムです。まだ完全ではないのですが、これがオリジナルの音声です。これをオクターブを出そうという基礎実験です。市販のエフエクターを使ってオクターブあげますと、音色が非常に変わります。

要するにスペクトルは倍に伸びているのです。

いまってますのは、線形予測符号のやり方を使ってスペクトル包絡の形をあらかじめ変えてピッチだけを変えようということをやろうとしています。これはリアルタイムで音程を修正した結果です。もとは音痴で歌っていました。

図14 ICMC ’93オープンコンサート
（ICMC ’93オープンコンサートはうろそくの火による作曲ビデオ）

時間が無くなったのでここまでにしますが、今までやってきても非常に強く感じるのは、数年前ではDSPを使わないとこういったことはできなかったのですが、今は、普通のパソコンで充分に思いつくということです。つまりコンピュータのスピードが非常に速くなって、余力がこういう遊びのシステムにも使えるくらいに使ってきたというふうに思います。最終的には、周りをパーソナルリアリティにするのが自分の抱える演奏家がついているような仮想空間ができると考えております。

画像をあまり見せなかったのですが、こういうシステムの中では技術が目前から期に遅らなければ行うことを良いシステムになるでしょう。表に出てきたのが何か動いているという点でではなくて、知らないとおそれが使われているようなシステムにできないかということです。それから、音楽家というか音楽家はパーソナルなものをリアルなものにするのが得意のような気がします。例えばピアノの音や楽器の音を模擬する電子楽器が出てきて、しばらくすると、それそのものを普通の楽器、電子樂器と使い、コンピュータ音楽というジャンルが出てくるというふうな意味で、例えば世の中でいうと、馬のない馬車というものがあって、まさに現在の馬車の方だということでしょう。それがいつものように市も登車を待たせしめているのです。このように意味で、パーソナルリアリティがリアルリアリティになるのではなくて何が企画しているかという意味がします。

最後に先ほどロボットのお話をしましたが、現在、二足歩行のロボットを作っているが21日に公開するのです。この二足歩行ロボットにダンスを教えて、先ほどの指揮システムでコントロールするというようなことを計画
お話しします。ロボットは動きが遅いので指揮を早くする
と転んでしまうようなこともあれば、自由なシステ
ムを作ることができてそれがいろいろなシステムに組み込
めるという時代になってきたような気がします。
ちょっとふたたびして申し訳ありませんでしたけど、
どうもご静聴ありがとうございました。

質問

橋本先生どうもありがとうございました。
それでは、ただいまのご講演に関しまして、もしご質問
等ございましたらお受けしたいと思いますが、いかがでし
ようか？

橋本

実際に今我々が考えていますのは、2つのロボットを
見て頂こうと計画しております。一つは足歩行でないロ
ボットです。車の上に載った柔軟な腕と手を持ったロボッ
トなものです。目と音が非常によく動くのです。人間を追
って話しかけた方向を向いて、簡単な会話をして積み木
ををするようなことも考えております。技術的には二
足ではない方が情報処理系が重くて、自然言
語による対応と、自分自身の位置を周りの状況から把握
するということをやらせます。

二足の方はまさに二本足で歩くというのが売りです。そ
う自由に歩けるわけではないのですが、どちらかというと、
抜き足差し足で歩くこともできるということです。マ
ンボを踊るということと、何かをを持って歩くということ
ができます。現在も自分自身よく動きまして、目が先
に置いて会話や音が後から行くという前庭動眼反射を持っ
ていて、入ってきた人とアイコンタクトをしながら会話を
するというモデルを計画しています。まだ動くかどうかはわ
からないのがです。

舘

その他何かございますでしょうか？
それではこれで終了とさせて下さい。
本日はどうもありがとうございました（拍手）。

【略歴】
橋本周司(HASHIMOTO Shoji)
1948年生まれ。1970年早稲田大学理工学部応用物
理学科卒業。東邦大学講師、助教授、早稲田大学助
教授を経て、現在、早稲田大学理工学部教授。画像
処理、ヒューマンインターフェース、ロボティクス、
音楽情報処理の研究に従事。工学博士。電子情報学
会、日本顔学会、画像電子学会、日本ロボット学会、
計測自動制御学会、国際コンピュータ音楽協会
(ICMA)の会員。