特集 ■ 超五感

バルーンの膨張現象を利用した触覚計測技術

田中由浩 名古屋工業大学 TANAKA YOSHIHIRO

佐野明人 SANO AKIHITO

名古屋工業大学

藤本英雄 名古屋工業大学 FUJIMOTO HIDEO

1. はじめに

ものづくり産業や医療分野等において,ヒトの触覚が 頼りとなる技能が多く存在する.ヒトは対象に触れるこ とにより硬さや粗さ,様々な質感を得ることができ,繊 細な作業が行える.触覚情報は対象との力学的な相互作 用により生まれる自身の皮膚の変形が基となっている. ただし,我々は自身の皮膚がどのように変形されたかは 意識することはない.皮膚や機械受容器細胞の構造には, 巧妙な触覚情報処理機構が仕組まれており,その特徴は 力学ベースで議論できる[1].触覚の本質が能動触である ことを考慮して,触覚情報処理機構を力学的(動的)側 面により解明し,その仕組みや本質的な原理を工学的に 応用することが重要である.

医師は,通常の手術において,生体組織の触覚情報を 診断・治療の重要な手がかりとして取得している.一方, 近年,患者の負担の低減,術後の早期回復の観点から, 内視鏡等を用いた低侵襲治療の発展,普及が望まれてい る.しかし,画像情報を中心とした遠隔操作と言え,高 い技能を必要とする.現在の低侵襲治療における課題の 一つは,触覚情報の不足である.触覚情報が取得できれ ば,より安全で効果的な治療につながると考えられる.

患部の触覚情報として重要なものには,硬さがある. 腫瘍等の病巣部では正常部と硬さが異なることが多い. また,生体組織表面には粘膜が存在し,表面の触覚情報 (ぬめり等)も診断・治療に重要な手がかりとなる.

このような背景の中,近年,様々なタイプの医療用触 覚センサが提案されている [2][3].しかしながら,多く は硬さを対象としており,表面の情報を検討しているも のはない.そこで,筆者らは硬さとともにぬめり等の表 面の触覚情報にも注目している.ヒトの触知覚において は,表面状態に関する情報は硬さと独立した因子である ことが布[4]やヒト肌[5]において報告されており,生 体組織においてもこれらの情報を得ることができれば, ヒトの触知覚に即した評価が期待できる.

また,生体内で使用する触覚センサを考えると,生体 安全性を十分に確保できなければならない.生体内で使 用するとき,人体への漏れ電流防止から,電気を使用し ないことが望まれる.また,電気を使用しないセンサは, 電気メス等に対する耐ノイズ性を有し,MRI環境下で も使用できる可能性を有している.なお,近年,生体安 全性を考慮したセンサも開発されつつあるが[6][7],表 面のぬめり等の触覚情報に注目しているものはない.

本稿では,筆者らが開発を進めているバルーンの膨張 現象を利用した触覚計測技術 [8][9] について紹介する. 生体安全性に優れ,生体組織の硬さおよびぬめり等の表 面情報を計測できる可能性を有する.

2. ヒトの滑り検出メカニズムとバルーンの膨張現象

ヒトが把持動作を行う際には、摩擦の検出が行われて おり、対象に触れた際に指表面に起こる初期の局所滑り が重要な役割を担っている[10][11].物体との摩擦に依存 する皮膚の横伸びあるいはせん断から摩擦係数が特定で き、皮膚内部のひずみ分布パターンから滑りを検出でき る.ヒトは無意識の内にこれを検知し、適正な力で対象 を把持できる.ヒトの滑り検出メカニズムを基にした触 覚センサ内蔵ソフトフィンガも開発され、触れた瞬間に 滑りやすさを検知できることが示されている[12].

この局所滑りが本研究のヒントになった.流体で満た したバルーンを対象表面に押し当て膨張させると、その 膨張過程において対象への押し込みが生じるが、同時に 接触面において局所的に滑りが生じる.したがって,そ の膨張は対象の硬さや表面の摩擦状態に依存し変化する ことになる.これにより,バルーンの膨張過程を何らか の方法で計測することで,対象の硬さやぬめり等の触覚 情報が取得できると考えられる.バルーンの膨張過程は, バルーンに通じるチューブ内を流れる流体の流量変化や 圧力変化により計測できる.本研究では,バルーンの圧 力変化に注目した.

3. バルーンセンサプローブ

3.1 構造

センシングのために対象に接触させるプローブ(以下, バルーンセンサプローブと呼ぶ)の構造および外観を図 1に示す.アクリル製チューブ(外径4[mm],内径2[mm]) の先端に半円球のラテックス製バルーン(膨張前の直 径4[mm],厚さ0.15[mm])が取り付けられている.バ ルーンと逆側には、コネクタが取り付けられ、ウレタン チューブ(外径4[mm],内径2[mm])とつながっている. 本チューブを通じて、流体がバルーンに送られる.

さらに、バルーンのついたチューブには、荷重負荷 機構が搭載されている.荷重負荷機構は、バルーンの ついたチューブより一回り大きい2本のチューブ(固定 チューブ(光硬化樹脂製,内径4[mm]),可動チューブ(ア クリル製,内径4[mm]))および2枚の円弧断面形状を 有するシリコーンゴムシートから構成される.図1か らわかるように、バルーンのついたチューブは、2本の チューブに挿入されている.これらのチューブの内の 固定チューブは、バルーンのついたチューブ先端に固定 され、もう一方の可動チューブは、チューブ上でスライ ドできる.また、2枚のシリコーンゴムシートはチュー ブと対称に配置され、その両端がそれぞれ、固定チュー ブと可動チューブに接着されている.シートは、厚さ1 [mm],長さ22[mm]、断面形状の円弧角 90 [deg] である.

センシングでは、プローブにより対象に与えられる荷 重を一定にする必要がある.これは生体に対する安全性 の面からも望ましい.ただし、前に述べたように、生体 内で電気を使用することは避けたい.そこで、機械的に 一定荷重を実現することを考え、上述した荷重負荷機構 を追加した.

3.2 荷重負荷機構

本プローブでは,可動チューブ部分を持ち,スライド させることで,対象にバルーンを接触させ荷重を負荷す ることができる.内視鏡においては,例えば,可動チュー

図1 バルーンセンサプロープ

ブ部分を内視鏡先端で固定し,内視鏡を動かすことで, バルーンを対象に接触させることができる.対象に接触 し荷重がかかると,シリコーンゴムシートは始め圧縮変 形を受けやがて座屈を起こす.座屈後は,シートが大変 形を起こし,対象およびプローブにかかる荷重はほとん ど変化せず,ほぼ一定になる.この区間は目視により確 認できるほど十分に長い.したがって,例えば,一定と なる区間に相当するバルーンのついたチューブ表面に色 を塗るなどして,一定荷重は簡単に確認できる.

図2に、本プローブを硬い対象に接触させた際の、可 動チューブの移動量と荷重を、プローブの様子と共に示 す.各移動量について5回計測を行った.図より、約1 [mm]から12[mm]の範囲で平均値1.06[N],標準偏差0.03 [N]の一定荷重を実現できていることがわかる.なお、 シリコーンゴムシートのヤング率や寸法、枚数を変更す ることで、荷重の大きさや座屈後の荷重一定となる区間 は調節可能である.

4. センサシステム

センサシステムの概略図を図3に示す.システムは, 貯水槽,ギアポンプ,安全弁,レギュレータ,ソレノイ ドバルブ,圧力センサ,バルーンセンサプローブから構 成されている.ポンプによって送り出された水がレギュ レータによって一定内圧に調整され、バルブ1を通じて、 バルーンに送られる.また、バルブ2はセンシング前に バルブ1までの内圧を一定に保つために用いられる.セ ンシング時に圧力が変化するため、センシング後もレギュ レータによる設定値にすぐに戻らず不安定になる.そこ で、バルブ2を用いて、水を貯水槽に開放し、循環させ ることでチューブ内の圧力をリセットする.これにより、 毎回のセンシングを一定内圧で行うことが可能になる. なお、バルブは3ポートとなっており、センシングの後 および条件のリセット中は、バルーン中の水は貯水槽に 戻される.また、圧力センサ1により、内圧状態の観測 は行っている.バルーンの内圧は圧力センサ2により計 測が可能であり、これをセンサ出力信号として扱う.

バルブ1の開閉は,パソコンで制御される.バルブを 開いた後,バルーンの内圧がピーク値をとり,その後一 定値 (0.08 [MPa])まで減少すると,自動的にバルブを閉 じる.なお,圧力センサ1,2の出力信号は A/D ボード を通じてパソコンに記録される.

5. 実験

5.1 実験試料および方法

図4に示すように、柔軟なウレタンゲルの上に液体を 塗布し、表面に粘膜を有する生体組織を模擬した試料を 準備した.ウレタンゲルには、硬さの異なる2種類(ゲ ルA:*E*=0.14 [MPa],ゲルB:*E*=0.44 [MPa])を準備した. 塗布する液体には、乳液、擦った山芋を水で溶かした液 体(以下、山芋水と呼ぶ)、水を準備した.なお、塗布の 条件を同じにするため、液体の体積は2[ml]に統一した. ゲルA、Bのどちらについても、水、山芋水、乳液の順 にぬるぬるした触感を感じる.

実験は、これらを組み合わせて、計6種類の試料について各5回ずつ行った. レギュレータの内圧条件は0.11 [MPa]とした.また、一軸のスライダが先端に付いたアームにバルーンセンサプローブを取り付け、スライダを動かし、プローブ先端のバルーンを対象に接触させた.

5.2 実験結果

実験時のバルーンの膨張の様子をビデオカメラで撮影 した. 図5に代表的な結果を示す.1[sec]のところで, バルーンに流体が送られ始めた.

初めバルーンは対象に押し込むように膨張が進み,そ の後,対象への押し込みよりも,対象と逆側に膨張が進 んでいることがわかる.これは,膨張の前半と後半で対

図3 センサシステム

図4 実験試料

象から受ける力が変化するためである.図6にこれを説 明する概略図を示す.膨張の前半では、バルーン以外の 部分も対象に接触しているため、荷重が分散する.その ため、膨張に従いバルーンが対象を押し込み、対象から 受ける力が増加していく.その後、膨張が進み対象から 受ける力の法線方向成分がプローブによる荷重と等しく なると、バルーンのみが対象と接触した状態となる.こ れ以降は、法線方向の力は一定のまま、膨張が進行する. したがって、後半においては、対象への押し込みは生じ ず、膨張が対象と逆側に進行する.

各試料について得られた代表的な圧力変化を図7に示 す. 圧力はいずれの試料も初め上昇し,ピーク値を取っ た後,緩やかに減少することがわかる.変化の特徴は各 試料で異なる.なお,出力波形にはノイズ成分を除去す るためカットオフ周波数4 [Hz] のローパスフィルタ処 理がされている.

バルーン自体の特性により,バルーンを負荷のない状態で膨張させると,圧力は初め上昇し,ピーク値を取った後,減少することが知られている[13].本センシングでは,この特性に,図6に示したように対象から受ける力が付与され,圧力変化が生じると考えられる.対象に応じてピーク値や圧力変化の傾きも異なる.

硬さに注目すると,同じ塗布液体では,硬い試料(ゲ ルB)の方が柔らかい試料(ゲルA)よりもピーク値が大

図6 膨張時に対象から受ける力

図7 バルーンの圧力変化

きいことがわかる.対象が硬いほど対象から受ける力も 大きいため圧力が大きくなる.また,塗布液体について 見ると,同じ硬さでは,ぬるぬるするものほど,ピーク 後の後半における圧力減少のタイミングが早いことがわ かる.バルーン表面での滑りは膨張時に一貫して起こっ ており,滑りにくいものほど膨張が抑えられ,膨張に時 間がかかり圧力もゆっくり変化すると考えられる.さら に,前述したように,膨張の後半では,対象への押し込 みが生じないことから,表面状態の影響が圧力変化に優 位に表れると推測される.

5.3 異なる触感の試料判別

前節の結果を鑑みると、ピーク値と後半の圧力減少に 注目することで、硬さおよび表面の情報を取得できる可 能性がある.そこで、圧力の極大値を *P*_p [MPa],バルー ンの膨張が終了される時点 (バルブ1が閉じられた瞬間) から 0.5 [sec] 前までの区間における圧力変化の傾きを *G*_d

[MPa/sec] とし、これらを特徴量として求め、各試料の差 を比較する.なお、傾きは最小二乗法を用いて算出した. 結果を分布図で図8に示す.各試料につき5回の計測す べての結果を記載した.図より、試料によって異なる領 域に分布することがわかる.柔らかい試料では、P_pが小 さく、ぬるぬるする試料では、G_aが小さい傾向にある.

以上の結果により,本センシングによる硬さや表面 状態の計測の可能性が示された.今後,圧力変化と対象 の硬さや表面状態の関係を詳細に明らかにしていくこと で,計測精度や計測時間の向上が期待できる.

6. 医療応用

本センシングを生体内に適用した場合,バルーンセン サプローブが生体内に挿入される.ここで,バルーンの 膨張を知るための圧力変化は,生体外で取得可能(圧力 センサ2)であり,計測のための一定荷重もプローブの 荷重負荷機構により実現される.したがって,生体内で 電気を用いる必要がない.また,バルーンは柔軟であり, 安全な接触が期待できる.以上の点から,本センシング は生体安全性に優れている.さらに,バルーン自体は現 在医療現場に用いられており(バルーンカテーテル等), 小型化等,実用化の面でも可能性が高いと考えている.

また、本センシングは上述した安全性以外に、生体 組織に対して有効な一面を持つ.本センシングにおけ る対象との接触領域は、2章で述べたように局所的で ある.一般的に滑りやすさなどの表面状態の計測には、 対象に対しセンサをなぞることが必要と考えられるが、 様々な形状をしている生体組織に対して安定したなぞり 動作は望めない.これに対し本センシングは局所的な能 動接触であり、なぞり動作を必要としないため、安定し たセンシングが期待できる. 本稿では、バルーンの膨張現象を利用した触覚計測技 術について紹介した.これは、ヒトが摩擦の検知に指表 面で生じる局所滑りを利用していることをヒントにして いる.生体安全性に優れ、生体組織の硬さおよび表面状 態を計測できる可能性を示した.今後は、膨張による対 象とバルーンとの力学的相互関係を明らかにし、定量的 解析を行っていく予定である.また、感度向上に向けヒ トの指特性 [12] を考慮したバルーンの改良も行いたい.

参考文献

- R. Kikuuwe, A. Sano, H. Mochiyama, N. Takesue and H. Fujimoto: Enhancing Haptic Detection of Surface Undulation, ACM Transactions on Applied Perceptions, Vol.2, No.1, pp. 46-67 (2005)
- [2] S. Sokhanvar, M. Pachirisamy, and J. Dargahi: A Multifunctional PVDF-Based Tactile Sensor for Minimally Invasive Surgery, Smart Materials and Structures, Vol.16, pp.989-998 (2007)
- [3] A.P. Miller, W.J. Peine, J.S. Son, and Z.T. Hammoud: Tctile Imaging System for Localizing Lung Nodules during Video Assisted Thoracoscopic Surgery, Proc. of the IEEE International Conference on Robotics and Automation, pp.2996-3001 (2007)
- [4] M. Tanaka, Y. Tanaka, and S. Chonan: Measurement and Evaluation of Tactile Sensations Using a PVDF sensor, Journal of Intelligent Material Systems and Structures, Vol.19, No.1, pp.35-42 (2008)
- [5] 飯田一郎: 触知覚の科学, 表面科学, Vol.10, No.12, pp.839-843 (1998).
- [6] 岡安はる奈,岡本 淳,藤江正克:バルーンを用いた 手術支援マニピュレータの開発 - バルーンのセンサ機 能性評価 -,日本機械学会ロボティクス・メカトロニ クス講演会講演論文集,2A1-G10,(2007)
- [7] M. Kaneko and T. Kawahara: Co-Axis Type Non-Contact Impedance Sensor, Proc. of the IEEE International Conference on Robotics and Automation, Vol.1, pp.709-714 (2004)
- [8] Y. Tanaka, K. Doumoto, A. Sano and H. Fujimoto: Active Tactile Sensing of Stiffness and Surface Condition Using Balloon Expansion, Proc. of the 2nd International Conference on Human System Interaction, accepted (2009)
- [9] 堂本和樹,田中由浩,佐野明人,藤本英雄:バルーンの膨張現象を利用した触覚センサ,日本機械学会ロボティクス・メカトロニクス講演会講演論文集(2009)
- [10] S. Johansson and G. Westling: Tactile Afferent Signals in

特集 超五感

the Control of Precision Grip, In Jeannerod M (ed), Attention and Performance, pp.677-713, Erlbaum, Hillsdale (1990)

- [11] T. Maeno, T. Kawai, and K. Kobayashi: Analysis and Design of a Tactile Sensor Detecting Strain Distribution inside an Elastic Finger, Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.1658-1663 (1998)
- [12] 佐野明人,西 恒介,宮西英樹,藤本英雄:触覚情報に基づく遠隔臨場感多指ハンドシステムの構築,計測自動制御学会論文集,Vol.40,No.2, pp.164-171 (2004)
- [13] W. Ogden: Large Deformation Isotropic Elasticity--on the Correlation of Theory and Experiment for Incompressible Rubberlike Solids, Proceedings of the Royal Society of London, A, Vol.326, pp.565-584 (1972)

【略歴】

田中由浩(TANAKA Yoshihiro)

名古屋工業大学大学院工学研究科 特任助教 2006 年東北大学大学院工学研究科バイオロボティクス 専攻博士課程後期3年の課程修了.触覚センサ,触覚情 報処理メカニズムなどの研究に従事.2007年度日本機 械学会賞(論文)受賞.日本機械学会,計測自動制御学会,

佐野明人 (SANO Akihito)

名古屋工業大学大学院工学研究科 教授

ロボット学会などの会員.博士(工学).

1987年岐阜大学大学院工学研究科精密工学専攻修士課 程修了.触覚テクノロジー,受動歩行,人間-機械系の 研究に従事.2004年度日本機械学会ロボティクス・メ カトロニクス部門一般表彰(ROBOMEC 表彰),2005年 度計測自動制御学会論文賞・友田賞などを受賞.日本機 械学会フェロー,日本ロボット学会評議員,日本バーチャ ルリアリティ学会,計測自動制御学会などの会員.博士 (工学).

藤本英雄 (FUJIMOTO Hideo)

名古屋工業大学 教授

1970年名古屋大学工学部機械学科卒業. 医学工学や感 性工学,ロボティクスなどに興味を持つ. ASME 最優秀 論文賞,2004年グッドデザイン賞など多数受賞. スケ ジューリング学会会長,計測自動制御学会中部支部長, 文科省科学技術・学術審議会文化資源委員会委員などを 歴任. 現在,愛知県産業人材育成推進協議会座長,日本 機械学会フェロー・評議員. 工学博士.